
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

July 12th 2012

Administration

● Midterms grades are posted.

● They will be returned during the second break/office
hours.

● Mean was 22, Median 23, stdev 10.
● Assignment 2 update.

● Help Centre is in BA2270 2-4 M-R.

July 12th 2012

Algorithms

● So far we've looked at common components of
programming languages.

● And how to get them to implement what we
want to computer to do.

● We've mentioned testing as a way to get correct
programs.

● How do we decide what code we want to test in
the first place?

July 12th 2012

Designing Code

● When we design code, we don't necessarily
want to be writing code.
● It's a lot of work.
● We need to worry about syntax and things that

aren't core to the design.

● We would like a generic language to talk about
code at a high level.

July 12th 2012

Pseudocode

● Half-code.
● A way of writing 'language-independent' code.
● All languages have variables and types.
● All languages have loops and if statements.
● In general we write at a level that we think could

be implemented in any languages.

July 12th 2012

Pseudocode

● Python code:
for i in range(len(my_list)):

 if my_list[i]%2 == 0 :

 my_list[i] = my_list[i]+1

● Pseudocode:

for every element e in my_list

 add 1 to the even-indexed elements.

● Note that pseudocode does use indenting to
indicate loops and separate bits of code.

July 12th 2012

Sorting

● We're going to using sorting as a case study.
● This is a core and thus very well-studied

problem in the literature.
● But it's also simple to explain.
● We will be covering basic methods for sorting.
● Our methods will be inferior to pythons
list.sort() method.

July 12th 2012

How do we approach the problem?

● Before we start actually solving the problem, we
want a formal definition.
● It is really hard to write code before you know

exactly what you're trying to accomplish.
● This formal definition allows us to start writing

testing code.

● We may also want to consider some small
examples to see what the result of the definition
should be on them.
● This should help catch poor definitions.

July 12th 2012

Sorting - Problem Definition

● We assume that we're given a list with n elements.

● Using n to denote input size is standard.
● We assume that we want the list sorted in non-

decreasing order.

● non-decreasing to handle case of duplicate
elements.

● We assume we can only do pair-wise comparisons.

July 12th 2012

Testing

● How might we test code that we think
successfully sorts a list?
● Hard coding tests is one way.

● Suppose we want random tests?
● Is there something we could do to a list to check if it

is sort?
● Recall the definition of a sorted list being one in

which the elements are in non-decreasing order.

July 12th 2012

Testing Criterion

● If we're sorting a list, how do we know when
we're done and the list is sorted?

● One way is to check every adjacent pair of
elements.

● If (in our case) the larger indexed element is at
least as large as the smaller indexed element
for every pair, the list is sorted.
● Why?

July 12th 2012

Common Approaches to Finding Solutions

● Look at several inputs.
● Try and decide which would be 'easier' to solve.
● Then see if there's anything that one can do to

make a hard input closer to one that is 'easy to
solve'.

● Alternately, try and restrict the inputs in some
way, and solve the restricted problem.
● Then generalise.

July 12th 2012

Pseudocode and Problem Solving

● Pseudocode is the point at which you want to
catch design problems.

● Corner cases are much easier to catch when
you actually have working code.

July 12th 2012

Which of these are 'more sorted'?

● [1,2,3,4,5,6,7,8]

● [1,234,54,22,32423,324,32,234]

● [2,1,4,3,5,6,7,8]

July 12th 2012

Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● [1, 2, 4, 6, 7, 8, 5, 3]

● [2, 1, 4, 3, 6, 5, 8, 7]

July 12th 2012

Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● The smallest 5 elements are sorted.

● [1, 2, 4, 6, 7, 8, 5, 3]

● [2, 1, 4, 3, 6, 5, 8, 7]

July 12th 2012

Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● The smallest 5 elements are sorted.

● [1, 2, 4, 6, 7, 8, 5, 3]

● The first 5 elements are sorted

● [2, 1, 4, 3, 6, 5, 8, 7]

July 12th 2012

Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● The smallest 5 elements are sorted.

● [1, 2, 4, 6, 7, 8, 5, 3]

● The first 5 elements are sorted

● [2, 1, 4, 3, 6, 5, 8, 7]

● Every element is at most 1 space
away from it's final destination.

July 12th 2012

Sorting Distance.

● We just saw several lists which we all 'almost
sorted' in different ways.
● The smallest n-1 elements are sorted.
● The first n-1 elements are sorted.
● Each element was at most 1 away from it's final

spot.
● We want to generalise this, and then come up with

something that can move a 'partially solved solution' to
a 'fully solved solution'.

July 12th 2012

Select

● Suppose we have a list in which the first i
elements are sorted and the smallest elements
in the list.

● What can we do to make sure the first i+1
elements are sorted and the smallest elements
within the list?

● How long does this take?

July 12th 2012

Select

● Suppose we have a list in which the first i
elements are sorted and the smallest elements
in the list.

● What can we do to make sure the first i+1
elements are sorted and the smallest elements
within the list?

● Find the minimum in the remainder and move it
to position i.

● How long does this take?
● Something like n-i steps.

July 12th 2012

Select

select(my_lst, i)

max = 0

for j = 0 to n-i-1

 if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

● max contains the index of the biggest value in
my_lst[0:j]

July 12th 2012

Insertion

● Suppose we have a list in which the first i
elements are sorted.

● What can we do to make sure the first i+1
elements are sorted?

● How long does this take?

July 12th 2012

Insertion

● Suppose we have a list in which the first i
elements are sorted.

● What can we do to make sure the first i+1
elements are sorted?
● Take the ith element and sort it into the first i

elements.

● How long does this take?
● Something like i steps.

July 12th 2012

Insert

insert(my_lst, i)

for j = i-1 to 0

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]

 else return

● my_lst[0:i] is already sorted, except possibly for
the element at position j+1.

July 12th 2012

Bubble

● Suppose we have a list in which each element
is at most i steps away from its final position.

● What can we do to make every element be at
most i-1 steps away from it's final position?

● How long does this take?

July 12th 2012

Bubble

● Suppose we have a list in which each element
is at most i steps away from its final position.

● What can we do to make every element be at
most i-1 steps away from it's final position?
● If we swap adjacent elements that are out of order

that we will decrease the maximum distance that
something is out of place by 1.

● How long does this take?
● Something like n steps.

July 12th 2012

Bubble

bubble(my_lst)

 for j = 0 to n-i

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]
● Note that we have no information in this

function for how sorted the list is coming in, so
it's hard to say anything about the loop.

July 12th 2012

From single steps to sorting.

● Now we have 3 functions that can take a
partially sorted list, and make it into slightly
more partially sorted list.

● How can we take these functions and make a
general sorted list?

July 12th 2012

Calling partial sorting function repeatedly.

● We note that for selection and insertion, every
time we call them, we can call them again but
increase the parameter by i.

● sort(my_lst):
● for i = 1 to n

 partial_sort(my_lst, i)
● Where partial_sort is insert or select.

July 12th 2012

Calling partial sorting function repeatedly.

● Bubble_sort is also a partial sort?
● How many times do we need to call it before

the list is sorted?
● n times.

● Each time the maximum amount an element is out
of place decreases by 1.

● sort(my_lst):
● for i = 1 to n
● bubble(my_lst)

July 12th 2012

Break, the first.

July 12th 2012

How can we optimise Bubble sort?

sort(my_lst):

for i = 1 to n

 bubble(my_lst)

bubble(my_lst)

 for j = 0 to n-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]

July 12th 2012

Optimising Bubblesort

● First Observation:
● Once we bubble a list once, then the maximum

elt is at the end.
● If we do it i times, then the last i elements are

the largest i elements.
● So if we know how many times we've bubbled,

we can stop early.

July 12th 2012

Optimising Bubblesort

bubble(my_lst,i)

 for j = 0 to n-i-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]
● The last my_list[-(i-1):] is sorted and contains

the largest i elements.

July 12th 2012

Optimising Bubblesort

● If bubble doesn't need to swap anything, the list
is sorted. So we can rewrite bubble sort to
check that, and finish early if it can.

● This means we need to use a while loop to call
bubble instead of a for loop.

● For now let's think about this optimisation
separate from the first one.

July 12th 2012

Optimising Bubblesort

bubblesort(my_lst)

 while bubble(my_list):

 pass

bubble(my_lst)

 inversion = False

 for j = 0 to n

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]

 inversion = True

 return inversion

July 12th 2012

Combining the optimisations.

● How can we combine these optimisations?
● When we combine them, we should be able to

improve the first one.
● Note, that this is too large for slides, so you

must download the code to see the solution.

July 12th 2012

Loop Invariants

● Often times loops can be hard to implement, or
it can be unclear what a loop is doing.

● A useful tool for analysing loops is a loop
invariant.

● A loop invariant is a statement that is true every
time to loop begins.
● So it depends on the loop index.

● They have both informative and imperative
functions.

July 12th 2012

Loop Invariant Example

for j = 0 to n-i-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]
● Here we see that the jth element is always the

biggest that we've seen. So a loop invariant
would be:
● my_lst[j] is the largest element in my_lst[0:j]

– This tells us a truth at the beginning of any iteration.
– It also tells us what we need to do in any iteration.

July 12th 2012

Pseudocode and Loop Invariants

● Loop invariants are really useful in pseudocode,
since they point towards the overall design of
the program.

● Also can be useful in finding +/- 1 errors.
● That is, they are useful in both the actual and

pseudocode stages.

July 12th 2012

Sorting Overview

● We covered three types of sort: Bubble,
Insertion, and Selection.

● Selection sort minimises swaps.
● Insertion sort is optimal for small data.
● Bubble sort is optimal for nearly sorted data.

July 12th 2012

Sorting in practice.

● In practice bubble, selection, and insertion sort
are all sort of slow.

● There are better sorting methods out there.
● The most commonly used ones are merge, heap

and quick sort).
● These all rely on recursion.

● Python uses an adaptive form of merge sort.
● Bubble and insertion sort have specific

instances in which they are useful and are
used.

July 12th 2012

Break the second.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

