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Administration

● Midterms grades are posted.

● They will be returned during the second break/office 
hours.

● Mean was 22, Median 23, stdev 10.
● Assignment 2 update.

● Help Centre is in BA2270 2-4 M-R.
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Algorithms

● So far we've looked at common components of 
programming languages.

● And how to get them to implement what we 
want to computer to do.

● We've mentioned testing as a way to get correct 
programs.

● How do we decide what code we want to test in 
the first place?
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Designing Code

● When we design code, we don't necessarily 
want to be writing code.
● It's a lot of work.
● We need to worry about syntax and things that 

aren't core to the design.

● We would like a generic language to talk about 
code at a high level.
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Pseudocode

● Half-code.
● A way of writing 'language-independent' code.
● All languages have variables and types.
● All languages have loops and if statements.
● In general we write at a level that we think could 

be implemented in any languages.
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Pseudocode

● Python code:
for i in range(len(my_list)):

    if my_list[i]%2 == 0 :

        my_list[i] = my_list[i]+1

● Pseudocode:

for every element e in my_list

    add 1 to the even-indexed elements.

● Note that pseudocode does use indenting to 
indicate loops and separate bits of code.
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Sorting

● We're going to using sorting as a case study.
● This is a core and thus very well-studied 

problem in the literature.
● But it's also simple to explain.
● We will be covering basic methods for sorting.
● Our methods will be inferior to pythons 
list.sort() method.
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How do we approach the problem?

● Before we start actually solving the problem, we 
want a formal definition.
● It is really hard to write code before you know 

exactly what you're trying to accomplish.
● This formal definition allows us to start writing 

testing code.

● We may also want to consider some small 
examples to see what the result of the definition 
should be on them.
● This should help catch poor definitions.
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Sorting - Problem Definition

● We assume that we're given a list with n elements.

● Using n to denote input size is standard.
● We assume that we want the list sorted in non-

decreasing order.

● non-decreasing to handle case of duplicate 
elements.

● We assume we can only do pair-wise comparisons.
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Testing

● How might we test code that we think 
successfully sorts a list?
● Hard coding tests is one way.

● Suppose we want random tests?
● Is there something we could do to a list to check if it 

is sort?
● Recall the definition of a sorted list being one in 

which the elements are in non-decreasing order.
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Testing Criterion

● If we're sorting a list, how do we know when 
we're done and the list is sorted?

● One way is to check every adjacent pair of 
elements.

● If (in our case) the larger indexed element is at 
least as large as the smaller indexed element 
for every pair, the list is sorted.
● Why?
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Common Approaches to Finding Solutions

● Look at several inputs.
● Try and decide which would be 'easier' to solve.
● Then see if there's anything that one can do to 

make a hard input closer to one that is 'easy to 
solve'.

● Alternately, try and restrict the inputs in some 
way, and solve the restricted problem.
● Then generalise.
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Pseudocode and Problem Solving

● Pseudocode is the point at which you want to 
catch design problems.

● Corner cases are much easier to catch when 
you actually have working code.
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Which of these are 'more sorted'?

● [1,2,3,4,5,6,7,8]

● [1,234,54,22,32423,324,32,234]

● [2,1,4,3,5,6,7,8]
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Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● [1, 2, 4, 6, 7, 8, 5, 3]

● [2, 1, 4, 3, 6, 5, 8, 7]
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Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● The smallest 5 elements are sorted.

● [1, 2, 4, 6, 7, 8, 5, 3]

● [2, 1, 4, 3, 6, 5, 8, 7]
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Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● The smallest 5 elements are sorted.

● [1, 2, 4, 6, 7, 8, 5, 3]

● The first 5 elements are sorted

● [2, 1, 4, 3, 6, 5, 8, 7]
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Which of these are more sorted?

● [1, 2, 3, 4, 5, 7, 8, 6]

● The smallest 5 elements are sorted.

● [1, 2, 4, 6, 7, 8, 5, 3]

● The first 5 elements are sorted

● [2, 1, 4, 3, 6, 5, 8, 7]

● Every element is at most 1 space 
away from it's final destination.
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Sorting Distance.

● We just saw several lists which we all 'almost 
sorted' in different ways.
● The smallest n-1 elements are sorted.
● The first n-1 elements are sorted.
● Each element was at most 1 away from it's final 

spot.
● We want to generalise this, and then come up with 

something that can move a 'partially solved solution' to 
a 'fully solved solution'.
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Select

● Suppose we have a list in which the first i 
elements are sorted and the smallest elements 
in the list.

● What can we do to make sure the first i+1 
elements are sorted and the smallest elements 
within the list?

● How long does this take?
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Select

● Suppose we have a list in which the first i 
elements are sorted and the smallest elements 
in the list.

● What can we do to make sure the first i+1 
elements are sorted and the smallest elements 
within the list?

● Find the minimum in the remainder and move it 
to position i.

● How long does this take?
● Something like n-i steps.
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Select

select(my_lst, i)

max = 0

for j = 0 to n-i-1

    if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

● max contains the index of the biggest value in 
my_lst[0:j]
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Insertion

● Suppose we have a list in which the first i 
elements are sorted.

● What can we do to make sure the first i+1 
elements are sorted?

● How long does this take?
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Insertion

● Suppose we have a list in which the first i 
elements are sorted.

● What can we do to make sure the first i+1 
elements are sorted?
● Take the ith element and sort it into the first i 

elements.

● How long does this take?
● Something like i steps.
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Insert

insert(my_lst, i)

for j = i-1 to 0

    if my_lst[j]>my_lst[j+1]

         swap my_lst[j] and my_lst[j+1]

    else return

● my_lst[0:i] is already sorted, except possibly for 
the element at position j+1.
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Bubble

● Suppose we have a list in which each element 
is at most i steps away from its final position.

● What can we do to make every element be at 
most i-1 steps away from it's final position?

● How long does this take?
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Bubble

● Suppose we have a list in which each element 
is at most i steps away from its final position.

● What can we do to make every element be at 
most i-1 steps away from it's final position?
● If we swap adjacent elements that are out of order 

that we will decrease the maximum distance that 
something is out of place by 1.

● How long does this take?
● Something like n steps.
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Bubble

bubble(my_lst)

    for j = 0 to n-i

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]
● Note that we have no information in this 

function for how sorted the list is coming in, so 
it's hard to say anything about the loop.
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From single steps to sorting.

● Now we have 3 functions that can take a 
partially sorted list, and make it into slightly 
more partially sorted list.

● How can we take these functions and make a 
general sorted list?
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Calling partial sorting function repeatedly.

● We note that for selection and insertion, every 
time we call them, we can call them again but 
increase the parameter by i.

● sort(my_lst):
● for i = 1 to n

      partial_sort(my_lst, i)
● Where partial_sort is insert or select.
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Calling partial sorting function repeatedly.

● Bubble_sort is also a partial sort?
● How many times do we need to call it before 

the list is sorted?
● n times.

● Each time the maximum amount an element is out 
of place decreases by 1.

● sort(my_lst):
● for i = 1 to n
●       bubble(my_lst)
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Break, the first.
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How can we optimise Bubble sort?

sort(my_lst):

for i = 1 to n

      bubble(my_lst)

bubble(my_lst)

    for j = 0 to n-1

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]
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Optimising Bubblesort

● First Observation:
● Once we bubble a list once, then the maximum 

elt is at the end.
● If we do it i times, then the last i elements are 

the largest i elements.
● So if we know how many times we've bubbled, 

we can stop early.
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Optimising Bubblesort

bubble(my_lst,i)

    for j = 0 to n-i-1

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]
● The last my_list[-(i-1):] is sorted and contains 

the largest i elements.



July 12th 2012

Optimising Bubblesort

● If bubble doesn't need to swap anything, the list 
is sorted. So we can rewrite bubble sort to 
check that, and finish early if it can.

● This means we need to use a while loop to call 
bubble instead of a for loop.

● For now let's think about this optimisation 
separate from the first one.
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Optimising Bubblesort

bubblesort(my_lst)

    while bubble(my_list):

        pass

bubble(my_lst)

    inversion = False

    for j = 0 to n

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]

              inversion = True

   return inversion
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Combining the optimisations.

● How can we combine these optimisations?
● When we combine them, we should be able to 

improve the first one.
● Note, that this is too large for slides, so you 

must download the code to see the solution.
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Loop Invariants

● Often times loops can be hard to implement, or 
it can be unclear what a loop is doing.

● A useful tool for analysing loops is a loop 
invariant.

● A loop invariant is a statement that is true every 
time to loop begins.
● So it depends on the loop index.

● They have both informative and imperative 
functions.
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Loop Invariant Example

for j = 0 to n-i-1

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]
● Here we see that the jth element is always the 

biggest that we've seen. So a loop invariant 
would be:
● my_lst[j] is the largest element in my_lst[0:j]

– This tells us a truth at the beginning of any iteration.
– It also tells us what we need to do in any iteration.
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Pseudocode and Loop Invariants

● Loop invariants are really useful in pseudocode, 
since they point towards the overall design of 
the program.

● Also can be useful in finding +/- 1 errors.
● That is, they are useful in both the actual and 

pseudocode stages.
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Sorting Overview

● We covered three types of sort: Bubble, 
Insertion, and Selection.

● Selection sort minimises swaps.
● Insertion sort is optimal for small data.
● Bubble sort is optimal for nearly sorted data.
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Sorting in practice.

● In practice bubble, selection, and insertion sort 
are all sort of slow.

● There are better sorting methods out there.
● The most commonly used ones are merge, heap 

and quick sort).
● These all rely on recursion.

● Python uses an adaptive form of merge sort.
● Bubble and insertion sort have specific 

instances in which they are useful and are 
used.
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Break the second.
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